Nuclear magnetic resonance shifts in paramagnetic metalloporphyrins and metalloproteins.

نویسندگان

  • Junhong Mao
  • Yong Zhang
  • Eric Oldfield
چکیده

We report the first detailed investigation of the (1)H, (13)C, (15)N, and (19)F nuclear magnetic resonance (NMR) spectroscopic shifts in paramagnetic metalloprotein and metalloporphyrin systems. The >3500 ppm range in experimentally observed hyperfine shifts can be well predicted by using density functional theory (DFT) methods. Using spin-unrestricted methods together with large, locally dense basis sets, we obtain very good correlations between experimental and theoretical results: R(2) = 0.941 (N = 37, p < 0.0001) when using the pure BPW91 functional and R(2) = 0.981 (N = 37, p < 0.0001) when using the hybrid functional, B3LYP. The correlations are even better for C(alpha) and C(beta) shifts alone: C(alpha), R(2) = 0.996 (N = 8, p < 0.0001, B3LYP); C(beta), R(2) = 0.995 (N = 8, p < 0.0001, B3LYP), but are worse for C(meso), in part because of the small range in C(meso) shifts. The results of these theoretical calculations also lead to a revision of previous heme and proximal histidine residue (13)C NMR assignments in deoxymyoglobin which are confirmed by new quantitative NMR measurements. Molecular orbital (MO) analyses of the resulting wave functions provide a graphical representation of the spin density distribution in the [Fe(TPP)(CN)(2)](-) (TPP = 5,10,15,20-tetraphenylporphyrinato) system (S = (1)/(2)), where the spin density is shown to be localized primarily in the d(xz) (or d(yz)) orbital, together with an analysis of the frontier MOs in Fe(TPP)Cl (S = (5)/(2)), Mn(TPP)Cl (S = 2), and a deoxymyoglobin model (S = 2). The ability to now begin to predict essentially all heavy atom NMR hyperfine shifts in paramagnetic metalloporphyrins and metalloproteins using quantum chemical methods should open up new areas of research aimed at structure prediction and refinement in paramagnetic systems in much the same way that DFT methods have been used successfully in the past to predict/refine elements of diamagnetic heme protein structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-state NMR fermi contact and dipolar shifts in organometallic complexes and metalloporphyrins.

We have used density functional theory methods to investigate the solid-state "magic-angle" spinning (MAS) NMR and single-crystal NMR/ENDOR spectra of paramagnetic organometallic complexes and metalloporphyrins. The solid-state MAS NMR chemical shifts (including both diamagnetic and hyperfine contributions) are predicted with a slope of 1.007 and an R2 = 0.967, corresponding to a 28 ppm (or 6.3...

متن کامل

Structural studies of proteins by paramagnetic solid-state NMR spectroscopy.

Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules th...

متن کامل

Metalloporphyrin enhancement of magnetic resonance imaging of human tumor xenografts in nude mice.

Paramagnetic metalloporphyrins were examined for their in vivo bio-distribution and their ability to enhance nuclear magnetic resonance imaging of human tumor xenografts in nude mice. The metalloporphyrins tested were: manganese tetrasodium-meso-tetra(4-sulfonatophenyl)-porphine (MnTPPS); manganese meso-tetra-4-pyridylporphine; and gadolinium meso-tetra-4-pyridylporphine. All exhibited high mol...

متن کامل

Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c.

A new approach to NMR solution structure refinement is introduced that uses paramagnetic effects on nuclear chemical shifts as constraints in energy minimization or molecular dynamics calculations. Chemical shift differences between oxidized and reduced forms of horse cytochrome c for more than 300 protons were used as constraints to refine the structure of the wild-type protein in solution and...

متن کامل

Hyperfine effects in the nuclear magnetic resonance of paramagnetic molecules

Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 46  شماره 

صفحات  -

تاریخ انتشار 2002